If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6h^2-13h-8=0
a = 6; b = -13; c = -8;
Δ = b2-4ac
Δ = -132-4·6·(-8)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-19}{2*6}=\frac{-6}{12} =-1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+19}{2*6}=\frac{32}{12} =2+2/3 $
| 3.2x=4,8 | | 11k^2+21k-2=0 | | 13=x/0/3 | | 3v^2-28v+9=0 | | 2f^2-3f-5=0 | | 6z+18=10z-10 | | 140=5(6v+4) | | 1.5x-8=-0.6 | | 4=w/5-15 | | 5y+20=9y-8 | | 220=-5(6a-8) | | 83=5f+18 | | 4x-10=5x+19 | | u+5/10=2 | | 10+8q=42 | | 5.5x(-3/5)=3.3 | | -5+8f=-37 | | x/100=25/500 | | 2j^2+17j+15=0 | | 7k+13=30 | | 2=-227+0.3t | | -4x=2=-14 | | -10x=2=-82 | | 8x+11+5x+68=180 | | 5y-4(y-1)=0 | | b+4/5=4 | | -9=2(5n-8 | | n-43/5=9 | | 4v+12=14 | | 4+6x-1=8x+17-2x | | 3(7s+6)-12s=3(3s+5)-18 | | 1/4b=b/3-6 |